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CHAPTER O

0.1 INTRODUCTION

In this section we give a quick discussion of the main topic of the book: when
does a Fourier series converge? We let T™ denote the n-torus [0, 1)", with elements
0=(61,02 ... ,6,)€T", and k = (k1,k2,... ,kn) an n-tuple of integers. If f is in
L?(T™), then the Fourier transform and the formal Fourier series associated to f
are defined as

foy = [ s@)emveas

f — Z f(k,)e21rik€'
kel
The central topic of this book is an analysis of the sense in which the formal Fourier
series of f actually converges to f. Of course we have to take finite sums, and then
a limit. Since the sum is over all n-tuples of integers, that is, over all k¥ € Z", we
need some method to order the lattice points of Z". The simplest is to include
them all in ever-expanding spheres; define k[ = k% + k%... + k2, and then define
the R** spherical partial sum of the Fourier series of f as

Sef6)= 3 k).

lkl< R

With this definition, the basic question we want to study is: when does Sg f converge
to fin LP?

In one dimension, the answer is classical, and was found by M. Riesz in 1910.
{(See Zygmund [57], Chapter 7, 2.4 ). Convergence is valid for all f in L? if and
only if 1 < p < oo.

In higher dimensions, the question was open until very recently. Carl Herz showed
in 1954 that a necessary condition for convergence is that ;—?_% <p< 712—_'_‘1 Charles
Fefferman showed in 1972 that convergence in L? holds if and only if p = 2. Feffer-
man'’s proof and its consequences are the main subject of this book.

Fefferman’s result shows that this is not the right way to sum Fourier series.
What other ways are there? Well, the points of Z"™ could be grouped in some order
other than taking whatever is inside a sphere. Concentric polygons are an obvious
thing to try, but this turns out to be no more interesting than repeating several one-
dimensional results. It doesn’t give any new mathematics, and it avoids having to
think deeply about Fefferman’s result. To avoid thinking about a subject is almost
always a mistake; at best you are in for some big suprises later on.

A classical analyst would quickly tell you the alternative to using spherical partial
sums: use a summability method. We shall analyse a method introduced by S.
Bochner, which itself was a variation of a summability method of Riesz: Set (£)4 = &
if £ > 0; let it be 0 if £ < 0. Then we define Bochner-Riesz means of order o by

CHOEDY [( —',';—'E)J ke,

|[k|<R



The point here is that if « = 0, S§f = Srf, so that by studying the limiting
behaviour as o tends to zero, we can hope to understand what’s wrong with Sg.

Very well; what is known about S§ for a near zero? The behaviour turns out to
be very complicated in high dimensions, and in fact the complete answer is known
only in two dimensions. Instead of trying to write down a formula for the answer,
we'll draw a picture. Figures 1 and 2 below show the L? boundedness of S§ for
1 < p € oo. The vertical axis is indexed by «; the horizontal by 11—). Dotted lines
and open circles represent points of known unboundedness; shaded regions known
boundedness.

The purpose of this book is to give detailed proofs of the results in the pictures.

n—1
a=-"—4¢ b
2 % 4
V
\ /
AY /
Y /
\] /
a=§<k /P \ /
A
\ ’ \ //
\ / \ /
\ / o= _n’I \ 4¢
; 2(n+1) \ i

N / N /

\ ’

\ / \ /

_____ -8 __.4_.4;___-__;______ xsl é—’-l
n— n

o o+l

2n n
Figure 1 Figure 2

0.2 THE ROLE OF FUNCTIONAL ANALYSIS

In this section we give an idea how convergence questions can be attacked. The
best way to do this is through a fast review of a standard result: there is a contin-
uous function in T whose Fourier series diverges at § = 0. Of course this function
can be explcitly constructed, but in general dimension explicit computations are
unmanageable. We turn for relief to the methods of functional analysis.

The abstract problem is this. If I take a finite Fourier series, the partial sums
of its Fourier series simply stop after a while, and I get the original function back.
So, partial sums of Fourier series converge on the so-called trigonometric polynomi-
als. The trig polynomials are dense in the continuous functions (Stone-Weierstrass
Theorem) and the continuous functions are dense in LP. I need to pass from infor-
mation about convergence of partial sums on a dense subset to convergence on a
whole space of functions: I need to interchange limits. Standard real analysis tells
me that some sort of uniform convergence allows interchange of limits; functional
analysis tells me that uniformity is a necessary condition. This is the point of the
uniform boundedness theorem.

0.1 THEOREM. There is an f € C(T) such that supy |Sy f(0)| = oo.

PROOF: We begin by changing this into a problem about operators on function
spaces. Define the operators Sy : C(T) — € by Snf = zIkKN f(k). Since the
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sum is finite, each Sy is a countinous linear functional on C(T). Every such linear
functional is given by integration against a finite Borel measure, in this case,

> Ak =3 [k pisias = [ xno)so)ds

|k|<N

here .
- sin27(N + 3)6
I\’N(6> — Z e—27rzk9 — ( 2) .

sin(78)
|kI<N
So in this case, the measure giving Sn is absolutely continuous, and its total vari-
ation norm is just ||[Kn{l1. This is not even very difficult to compute; in Zygmund
[37] the precise computation is given as

. 2
|E~n] = ;logN + O(1).

The real problem is to relate how Sy acts on individual functions with how it
behaves as an operator on the space C(T). This is what the uniform boundedness
theorem tells us. Either: i) The Sy are uniformly bounded in operator norm; or,

ii) supy |Sn f| = oo for a dense set of f. Since the first conclusion does not hold,
the second does.

This result is absolutely typical of what we will do in the rest of the book. There
will be some functional analysis trickery that reduces convergence questions to ques-
tions on the boundedness of operators on function spaces. The functional analysis
is followed by a computation of specific operators; and the analysis concludes with
a detailed computation.

0.3 BACKGROUND

In the next chapter, we will present the functional analysis needed to analyze con-
vergence of Fourier series. The best trick will be to transfer problems from Fourier
series to Fourier integrals. This is good because it is easier to compute an integral
explicitly than to sum a series in a closed form. On the other hand, this is bad
because the integrals defining Fourier transforms do not converge absolutely. The
modern solution to this difficulty is to use a dense subset on which everything does
converge, and then pass to a limit. This is the point of the theory of rapidly de-
creasing functions, which we summarize in this section. A more detailed treatment
is given in Stein and Weiss [50].

For f € L'(IR"), the Fourier transform f is defined as

f(6) = / f(z)e 2T g,

The integral converges absolutely, and || flleo < I fll;. To define f for f € L?, we
need to use trickery and deceit.



The space of rapidly decreasing or Schwartz functions is denoted by § and is
defined as the class of all smooth functions f on R™ for which the seminorms
sup, ‘a:"‘ D? d)(x)] are finite. We’ve used multiindex notation here; if we let « denote
the multiindex & = (a1, ®2,...,a,); then 2 = &7 ---23". As these seminorms
vary with «, they give rise to a topology on §&. The dual of § is then called the
space of tempered distributions. Then it is not hard to prove:

0.2 THEOREM.
a) S is densein LP if 1 £ p < oo.
b) The Fourier transform is a continuous, one to one map of § onto S.
¢) If the convolution of two functions f and g in § is defined as

frg= /f(x —y)g(y)dy,

then this function is again in § and f/*\gA_z fg.
d)If f and g are in S, then [ f§= [ f§
e)
[Ifllz = [ fll2

f) The Fourier transform of a distribution u is defined by 4(f) = u(f). Then 4
is again a distribution.

g) The translation operator 7, is defined by (ry f)}(z) = f(z — y). If convolution
of a distribution u and a function in § is defined as (u x f)(z) = u(r,f), where
f(y) = f(—y), then u x f is a smooth function.

The space § is a technical tool which makes it easy to do computations with
integrals that might otherwise be infinite. We will also need some notation for the
rest of the book. If T is a bounded linear operator from L?P to LP, we denote its
operator norm by ,||T||. Recall then that

ATI = sup{IT Ay | £l = 1}
and that
T = sup{ / Tfg | 1l = llglly = 1},

1 1
where = + 5 = 1.
3 + >

0.4 NoTES FOR CHAPTER 0O

0.1): Bochner-Riesz means are a variant of Riesz means, (1 — |n|?)$; we shall see
that the two summability methods give the same results in L?, but that Bochner-
Riesz means are much easier to compute with. The original interest of the S§ was
in conection with pointwise summability and the localization of Fourier series (a
topic now in disrepute due to its difficulty). Bochner’s paper [1] showed that n-
dimensional problems are deeper than one-dimensional; localization did not hold
for all a, in contrast to one-dimensional results. The essential ideas are also treatcd
in Stein and Weiss [50] Chapter 7 Theorem 4.2.
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There are good reasons for grouping Fourier coefficients together in concentric
spheres rather than in concentric polygons. In Bochner’s words([1] pps. 179-80):

"The elementary exponentials u(z) = e'("1#1+- +m20)(all ny, ... n; integers)
are a complete set of regular solutions of the characteristic value problem

Au(z) = —du(z),
if this system is being considered on the (closed) torus
0< 29 < 2m,...,0< 2 £ 2m,

and A is the Laplace operator with respect to the Euclidean metric on the torus,
namely

8%u - 0%u
53 T 8:5% .
Since A = n® + ... + n? our way of writing series . . . . satisfies the ver
1 k Y g ¥y

natural principal of ordering the terms in a series according to the magnitude of
the characteristic eigenvalues A.”

To paraphrase Bochner, in looking at spherical summability methods, we are
really looking at the question of the convergence of the eigenfunction expansion of
a differential operator on a compact Riemannian manifold. C. Fefferman’s result
has been used to show that if n > 1, such expansions never converge. This is our
main point: the divergence of spherical means are not an abberation caused by a
crazy choice of summability methods, but is a fundamental fact of high dimension
geometry.

The results summarized in Figures 1 and 2 are due to many individuals. See Herz
[27], C. Fefferman [23], Carleson and Sjolin [5], and Tomas [51] for a summary.

0.2): The computation of the ||Kr||;, which are called the Lebesgue constants, is
due to Fejer (1910). These sort of techniques fail miserably in higher dimensions,
because the series for Kg(8) cannot be summed. It is possible to show that [[Kg||; =
O(Rn—;l) if n > 2, which is the best possible estimate; see Shapiro [44] for the proof
and references to earlier results. In trying to get an explicit formula for the partial
sums K g, you quickly realize that a really good formula would allow you to compute
exactly the number of integer points inside a ball of radius R in R". Unfortunately,
getting good estimates on this is one of the hardest problems in number theory. It
is a serious problem because for some R, there are no pairs of integers (m,n) with
m? + n? = R%. But for a slightly different R, there will be lots of pairs. You can’t
expect any really regular expression that would follow from a good formula for Kg.

The classical, detailed proofs of the divergence of Fourier series at a point are
best found in Zygmund [57], Chapter 7 Volume 1.






CHAPTER 1 MULTIPLIER THEORY

SECTION 1.1 MULTIPLIERS ON LP

There are problems "summing” Fourier integrals; the purpose of this section is
to see what the problems are and how they can be overcome.
If f € L2, the expected inverse Fourier transform

F= / FE)emi=tde

simply does not converge. The traditional remedy is to look instead at ”partial
sums” : integrals over bounded regions; this forces the integral to converge. One
then hopes to take a limit and have convergence of the limit. We define the partial
sums operators Sg by

Spf(z) = /W e,

which does converge absolutely. We hope that for all f € L2, limp_ oo Spf

exists in L?, and that the limit is f. The first problem is that we don’t even know
that Srf is in L?, let alone convergent in L?. So we begin with the functional
analysis of the operators Sg: do they take L? functions into L? functions? We let
B denote the unit ball in R", and let xp (—%) be the characteristic function of the
ball of radius R. It follows that

Saf(e) = [ () s

These are the operators we intend to study.

1.1 DEFINITION: A Fourier multiplier operator on LP(IR") is a linear operator T
bounded on L? for which there exists a 4 € L°(IR") satisfying

Tf(z) = / (€ F(€)ermied

for all Schwartz functions f. In this case, g is called the Fourier multiplier associated
to the operator T.

REMARK: The operator is really defined by a functional equation: f} = uf, which
is very indirect. To actually work with multiplier operators, we need characteri-
zations which stay on one side: either the function side or the Fourier transform
side.

1.2 PROPOSITION. Assume T is a Fourier multiplier of L?. Then there is a distri-
bution K for which

Tf(z) = K * f(z),



for all f € S. K is called the convolution kernel of T.
ProOOF: To see what is going on, take u € S. Then

Tf(z) = / W(E) = F(6)de = / p(€)erint / €27 f(y)dy

- / / (€)™ e f(y)dy = / iz — y)f(y) dy = i » F(z).

Because everything in sight was a Schwartz function, we could rearrange the in-
tegrals, and we took the distribution K to be the function 4 . To give a general
proof, we need a lot of distribution facts. First of all, if f € S, f € § and, since
pe L, uf € L', so that

Tf(z) = / i (6)f(€) de

exists for all x.

The distribution K is defined by K(f) = (T f)(0). The integral representation
for f shows that this is a distribution: f — f is a continuous map of S into &, and
integration against an L function is well known to be a distribution. To finish,
notice that

(K * f)(2) = K(ra f) = T(r, f)(0)
= T(r_. F)(0) = / W) o F(€)dE = / (€)= F(6)de = T (x)

the next to the last equality holds because

F(©) = / 2T (r, £)(y)dy = / ST f(y),

1.3 REMARKS:

a) As distributions, K is  and ji is K.

b) The distribution K could be very bad; look at the operator T'f = f. Here the
Fourier inversion formula tells me that ¢ = 1. What distribution gives this? The
distribution corresponding to T is the Dirac delta measure, §{(f) = f(0). Working
out the formalities,

(6% f)lz) = 8(r2f) = (. F)(0) = f(—2) = f(z).

The moral is that even trivial operators can generate distributions that are not even
given by integration against functions. To make things worse, we will now sketch
an example where K is not even given by integration against a finite measure. Let
u be the L™ function isign({), then we will compute in 2.13 that i(z) = L. But
let’s face it, a(f) = %f %f(x)d$ normally does not converge. Properly speaking,
we have to take a principal value integral integral,
1 1

lim = —f(z)dz.

0T Jjzize T
"This sort of distribution should be expected when the multiplier is not an integrable
function.



1.4 PROPOSITION. If T is a multiplier of L? and f € S, then

(TH)E) = u(€)f(€)

PROOF: To see this, we have to see that as distributions, ’1/"}' and ;L(E)f({) act the
same. Pointwise equality follows immediately, since both distributions are given
by integration against functions; that was the whole point of taking f € S; then
f €S and p f € L!. Tt follows that T f is even continuous. Ok, checking equality
by integrating against a function g € S,

/ﬂg=/Tfa,

from 0.2 extended to all of L2. But

/ufg=//uf(g)=/(ﬂf)§=/Tf.<§-

The triple (T, K, pt), is called a multiplier triple. T is the multiplier operator, K
the convolution kernel, and u the multiplier. In the rest of the book we will often

use phrases like ” Let T be an operator with multiplier p”, or, ” If 4 is a multiplier
with kernel K7.

1.5 PROPOSITION. Let T be a multiplier operator on L%, with multiplier p. Then

2 TN = [l oo

PROOF: From the Plancherel theorem,
1T £l = 1T F]l2 = lufilz

< lillooll fllz = lsllooll £z

so that 2||T|| < ||t]lco- Now we'll show that if € > 0, then »||T|| > {jullec — € .

From the definition of L™, the set £ = {£ | |¢(€)} > Jlullc — €} has positive
measure; we can choose a subset S of E with positive but finite measure. Then we
can compute the norm of this function: xs € L%, and ||xsll2 = |xsllz = |S]2. We
also can compute the norm of T applied to this function:

2IT] sz = 2T 1S12 2 1T (xs)ll2 = llmxsllz

> inf [u(€)xs(E)lllxsllz 2 (Iulleo = €)IS1F = (lulloo = €) [Xs]l2-

1.6 TECHNICAL REMARK: We used the result that T(;S‘) = pxs. We really only
proved this if f € S, but the characteristic function of a set S is certainly not in S.
This is typical of the petty technical problems that plague this subject, all due to
the fact that our multipliers are only defined on a dense set of L?, and extended to

9



the remainder by continuity. In this remark we want to show how to treat a typical
petty problem.

For f € L2, choose f; € S such that f; converges to f in L?. Since the Fourier
transform is continuous on L2, fj converges to f in L?. Since T is a bounded(that
is, continuous) operator on L2, T f; converges in L% to T f, and ff\] converges to TI/’?
in L?. We may take a subsequence j; such that T/Ek converges and f]-k converges
pointwise ae to TZ/’;‘ and to f . Then, for almost all £,

TF(€) = lim TF;,(6) = lim p()f;(6) = n()f(€).

1.7 PrROPOSITION. T is a multiplier of L' if and only if the convolution kernel K
is a finite measure, dm, and in that case

7] = lldm.

PRrROOF: This result has a simple intuition. The Dirac delta function § is almost an
L! function, and it also acts like the identity operator. Then ;]|T] should be like
K % §||1 = ||K|l; This proof shows how to handle the "minor” technical annoyance
that § is not a function in L. If we assume that K acts as a finite measure, then

1% 5l = 1)l = | [ eDwim(o)l

< /foflh,ydlml(y)= /Hf(y—w)lhdlml(y)= £l lldm]i.

It follows that 1||T|| < |ldm]|.

For the other direction, I need to get at the § function even though it is not an
L' function. We’ll use an absolutely standard technique: instead of using §, we
approximate it by functions which are in L!. We choose Gaussian kernels:

wy(z) = (2mt) ™" exp [—(|=|/2t)] ;

we rigged it so that [lw]]1 =1, w¢ € S, and so that for every f € §,w; * f converges
in & to f as t tends to zero. Of course we get

IT@olls < 31T lwels = 11T
the question is whether we get T(w;) = K*w; converging to dm. If K were a function
in &, this would be no problem; here all we know is that the T(w;) are uniformly
bounded in L. To get from this sort of information(boundedness) to convergence
information is clearly some sort of compactness condition. Unfortunately, the unit
ball in L! is not sequentially compact, so we resort to trickery and deceit.

The T(wy) arein L?, and they can be viewed as finite measures with total variation
norm bounded by 1. Amazingly enough there is a topology on the space of finite
measures, M under which closed, bounded sets are sequentially compact. We view
M as the dual of Cg, the space of countinuous functions vanishing at infinity. The

10



topology we put on M is called the weak-» topology: u; converges to ¢ means that
#;(f) converges to u( f) for all f € Cy. Then Alogolu’s theorem (Rudin [43]) asserts
the needed compactness: there is a subsequence T(wy, ) which converges weak- * to
some finite measure dm in the ball of radius {]|T'|]. We’ve gotten as far as knowing
what dm is, and we even know that the total variation norm of dm is bounded by
1IiTll. The only little detail lacking in this sweet picture is the statement that the
distribution K is given by integration against dm. This is the role of the weak-x
convergence. Since § C Cy, for every f € S,

am(f) = [ fam= fim [ £T00) = lim [ 1K e,

= lim /f(x)K (rel;(y)) dz = lim K (/ fwe; (y — z)dz) .
J—o0 J—o0

The last equality is true because the integral can be approximated by a Riemann

sum. The approximation will converge in § and so we interchanged the approxima-

tion and the distribution. Finally,

lim K (wt].) *f=K (jlirgowtj *f) =K(f).

j—oo

This is called a “regularity” result; at first we only knew that K was some poten-
tialy awful distribution. In fact, it had to be a much nicer object, a finite measure.
How did a distribution suddenly get forced to be a measure? The boundedness of
an L' norm forced a sequence of smooth approximations to converge. So this is our
first example of how L? boundedness of operators forces regularity; once again note
the role of functional analysis.

11



SECTION 1.2 MULTIPLIERS ON L?
1.8 LEMMA. IfT is a multiplier of L?, then it is a multiplier of L', where i—-{- }% =1.

PrOOF: To see the idea here, remember that L?' is the dual space of L?, so that the
boundednes of the operator T on LP implies boundedness of the adjoint operator
T* on L?'. Our goal is to relate T and T*. If T were given by convolution with
some sort of reasonable function, say a nice Schwartz function K, then we could
compute:

[ris= [Kta= [ [ K@ -nfata
= [ [ K- va@iwivds = [ (K «@) f)dy
= [ 1K@

This computation means that if we define the isometry J of L? by Jf = ?, then
T* = JTJ. Since J is an isometry, we get

ATl = plIT* = T}
The real problem will be in changing the order of integration when K is not a nice

Schwartz function. We will do some unpleasant computations with distributions,
following the intuition we just gave.

[r1a= [ ke s = [ K (r()w) stz

- & ( [eNwataas) = & ([ 1tz - vateric)
— & ([ f@ate+ i) = & [ s@)r-pwic)

~ [ f@) [k +3(@) do.
Etc, etc.
1.10 LEMMA. If K € L?, then |K * f{l, < |K[l1|fll,
PROOF: As in the proof of 1.7,

1K+ fll, = | / K@)z - y)dyll,

< / IKW)] 1@ = 9llpedy = 1K1 | -

1.11 REMARK: We now have a pretty complete understanding of multipliers on L!
and L?; we would like to get a better understanding of L? for 1 < p < 2. By duality,
that is, by 1.8, we would get a grasp of multipliers of L? for 2 < p < oo.

12



Think about the identity operator, bounded on all L?. If we understand a function
in L' and in L2, why should that tell us anything about the function in LP for
1 < p < 27 What is needed here is some sort of convexity: if you think of things
graphically, the operator norm of T on L? should lie below the norm for T on the
line between L' and L?. This happens not to be true. Look at Holder’s inequality:

Jisimzon < (i) (fuem)

this tells me that log ([ |f|?) is a convex function of p.

1.12 THEOREM. Let S = {z € € | 0 < Re(z) < 1}. Let F be bounded and
continuous on S, and analytic in the interior of S. Let k; = sup, |F(z +iy)|. Then
log k. is a convex function of x.

IDEA OF PROOF: This is a standard result from complex variable theory; the first
thing to do is to rescale F' to be bounded by 1 on 0 + iy and on 1 +1y; the rescaled
function is G(z) = F(z)ky *k}7%. Then we try to prove |G| < 1 everywhere. If G
vanishes as |y| — oo, we rig up a rectangle on whose boundary |G| < 1, outside of
which |G| < 1. Inside, we apply the maximum principle. Now if G does not vanish
at infinity, we use the boundedness of G to multiply by an exponential tending to
zero. As we let the exponential go to infinity more slowly, we recover G. It follows
that G(z) is everywhere bounded by 1, and therefore that |F(z)| < kZkZ~!. Taking
the supremum and then the log gives the right result.

1.13 THEOREM. Let T be a linear operator bounded on LPi i = 0,1. Then
log ,||T|| is a convex function on [# ,%]. That is, if }1—’ = pt—o + % for some
t with0 <t <1, then

PITI < poll T 5 1T

ProOF: Clearly we want to use 1.12, and take F(z) = [|Tf|*. This runs into
technical problems at any = for which T f(z) = 0, and I can’t raise T(f) above 0 by
adding on € without destroying finiteness of the integrals. Then too, this doesn’t
get me a look at the ,||T')|. I fix all these problems in one step: I'll test the size of

T(f) by integrating it against an L?" function, and I'll avoid the zeroes problem by
evaluating T' on simple functions. Thus, let f, g be simple functions with

1fllp = lgllr =1,
F@)y=>"lajleixg;; glz) = Ibxle* xp,.

Here E;, F} are sets of finite measure; we will show that

[ria< izl iz

First let a(z) = £ + 1-};—’—. This maps the % interval into [0,1]. Then let

Fe) = [T (T lasrocxs,) (T bl O-0exs,).
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This is not the same as raising T f to the z power, but it is an analytic function of
z in the strip S, and bounded and continuous. Note that

IF(z +3y)| < poll T 1Y las P xm; llpo 11D 106 P O~ ex x g, ||
But _
1D laiPeixg lpo = 1| las 1 *Px g,
because of the disjointness of the sets E;. Now
Re(ap) = pRe [ﬂ + Z—g] ;
Po Po
it follows that

1D 1P b e = 13 10515 x5, llpe
=11 laslxm, 130 = 15 =1.

Similar estimates apply to the second term, and it follows that
0+ i) < polIT; [F(1+iy)] < 5|7
The Theorem now follows from 1.12.
REMARK: This result is called the Riesz-Thorin interpolation theorem.
1.14 THEOREM. 1 <p <2, ||fll, < lIfll,-
Proor: A
1T flloo = Hiflleo < 112
ITfllz = Il = li£ll2
These two cases show that T maps L? into L for the special cases of p = 1 and
p = 2. The p, p’ relationship is linear; interpolation preserves it. The map has norm

bounded by 1 on each of the endpoint spaces, and interpolation preserves this norm
as well.

1.15 REMARKS:

a) Initially, the Fourier transform was defined only for L! functions, because only
there did the integrals converge absolutely. The Plancherel theorem allowed us to
extend the operator to L2, but if f € L2, f is only defined almost everywhere. The
result above is called the Hausdorff-Young theorem, and it allows us to extend the
definition to L? for 1 < p < 2. Thus, the Fourier transform of a function in L? is
the limit in L?' of the Fourier transform of Schwartz functions.

b) The Hausdorff-Young inequality is pretty much the best we can do, at least
if size is measured by L? norms. The following trick demonstrates it: let fs(z) =

f(6z). Then for a fixed f,
I fsllp = Hf”pé_% =c6"%
fs(&) =67F(671¢)
I fsllg =c'677.
Therefore, || f||; < C||f||, can only happen for some f if
Lt < 6”7

for all 6 > 0. Thus ¢’ = p.
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1.16 LEMMA. Let (T, K, ) be a multiplier of L?. Then

[lleo < HIITI-

ProOF: Note that ,||T|| = ,[IT|}, so that we can interpolate between L? and L?’.
L? always lies in between, so the operator is always bounded on L2. Moreover,

1 1{1,4 1
5=73 (p-{-p,),whence

lulloo = 21T < HITIE pITYE = HITY.

1.17 REMARK: Notice that ,||T|| < ||K|}1, as remarked in 1.10, although for a
multiplier of L? the L! norm of the convolution kernel is probably not finite. But
we now do have a relationship amongst all three components of a multiplier triple,
(T,K,p)

lulleo < LTI < 1K1

Of course, this relation is worthless for most purposes: we can expect the estimate
to be good only when the extreme sides are equal: |[p]loe = ||K]|;. But this means
[ Koo = ||K]l1. But | K|loo < ||K]|1 in general. On the other hand, if K is a positive
function,

K]y = /K = /K(z)e”f“dx = K(0) < |Kloo ;

so that for positive K, R
1Klleo = [[Klx = {7

For positive convolution kernels, thern, the whole story of multipliers is clear: they
yield multipliers of an L? if and only if they yield multipliers of all L?, and in this
case their L! norm is exactly their L? operator norm. On the other hand, we saw in
the Introduction that really the most interesting multiplier operators have terribly
unpositive convolution kernels. For such multipliers, the gap between ||K||; and
|00 is large, but we will need to control both of these to control the operator
norm of 7.

This is one of the central problems in Fourier analysis: the need for simultaneous
control of K and K.

1.18 REMARK: There are other means of controlling functions in L? for 1 < p < 2.
The simplest is to chop an L? function into pieces, each of which is in some other
Lebesgue class. The basic example of this is setting

G ={z] If(z)l <1} B = {a| |f(2)| > 1}.

Then f = fxe + fxB = g +b. This is a decomposition of f into a "good” function
¢ and a "bad” function b; the good part is that

lgll2 = /G P = /G FPPIfP < /G P < 1A

bl = / b = /B £ < 1Bl
15



So we see that an arbitrary function in LP for p between 1 and 2 can be written
as a sum of functions, one in L' and the other in L2, If T is a linear operator, we
have some hope of following the L? boundedness of T simply knowing the L' and
L? behaviour. Now we’ll do all this more carefully.

1.19 DEFINITION: A measurable function is in weak L? if
Hel [f(2)] > AH < CA7P

where C' is independent of A\, 0 < A < .
An operator T is said to be weak (p, p) if

I
Hel ITf(2) > A} = O==

where C' is independent of A and f.

1.20 REMARKS:

a) Usually we write |{f > A}| as a shorthand for [{z| |f(z)| > A}|; since we may
often take positive functions, it turns out this never causes notational problems.
This is called the distribution function of f, and often written as A(f).

b) A typical function which is in weak L' but not in L' is f(z) = 1. A standard
computation shows LP functions are always weak LP:

izl 1f(2)] > A} = /{ e

< /{ PCIEE / FP =[£I

¢) If weak L? is going to be any good in analyzing serious L? functions, distribu-
tion functions need to be connected with L? norms. The relation is:

17 =2 [ Il 1£(2)] > A} ¥,

The simplest proof uses simple functions, and this reduces the whole thing to what
happens for f = xj, where I is an interval. Then ||f||5 = |I], and [{z] |f(z)] >
A} =01if A > 1, and equals |I] if 0 < A < 1. Then the integral is

pmfo A1) = (1.

1.21 THEOREM. Assume T is a linear operator which is weak (py,po) and is weak
{(p1,p1). Then T is a bounded operator on LP for p between py and p;.

PROOF: To make it easy on the authors, we do only the case 1 < pg < p < p; < 0.
As in Remark 1.18, we let:

G={ifl <3} B={Ifl> 3.
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9= fxa; b= fxm

and we note that |Tf] = |Tg + Th| < |Tg| + |Tb|. Unfortunately, distribution
functions are not linear, so this decomposition of T f is not immediately useful. But
there is a substitute for linearity:

HITS1 > M) < [Tl + [To] > A}
< HITgl > S+ 178l > 2

SCO/\—PO/[blPo +Cl/\'—m /Ig]pl‘
Now we compute:
ITFIE = p/ {IT ] > A}AP~1dA

and find that it is bounded by the sum of two terms; the first term is:

COP/ ,\P—Po—I/ lf]pOdiEd/\
0 {5124}

22"*pCo

2141
=C // APPolgy | f(z)[Pods = —E0 ) £fp.
v [ | \f()lPede = ——==|I£l}

Similarly, the second term is bounded by:

2P~1pCy
m”f”ﬁ-

REMARK: This result is due to Marcinkiewicz; notice that as p tends to pg or to p;,
the bounds on the multiplier get very bad. The rate at which they get bad provides
extra information at the endpoints. The basic example to keep in mind is 1: here
the L' norm is not finite, but the divergence is measured by logz. A similar result
holds in the Marcinkiewicz interpolation theorem; see the notes at the end of the
Chapter.

1.22 I/JE‘;MMA._Iff, g are in S, then
a) f(€) = f(=¢€). ) )
b) If fs(x) = f(62), then fs(€) = 6" f(571¢). S
c) If R denotes a rotation of R", and fr(z) = f(Rz), then fr(£) = f(R™€).
d) (14 £)(&) = ¥4 f(£).
o) (F9)(E) = f % 3(E).
£) (f *9)(€) = F(©)a(e).
g) Dg; (§) = —2mi(z; £)(§)
PROOF: All of these follow from changes of variables and the definitions. A reader

who has not seen these results before is urged to work out the details. This is
making friends with the Fourier transform.
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1.23 THEOREM. Assume (T, u, K) is a Fourier multiplier triple for LP(R"). Then:
a) Re(p) and Im(p) are L? multipliers.
b) Let Ts be the operator with multiplier p(6¢). Then p||Tsll = AT
c) Let T, be the operator with multiplier u(§ —n). Then H|T,l} = LT
d)If € L*, let Ty, be the operator with multiplier u. Then p||Ty|l < ||%]l1 p||T}.
e) If ¥ € L', let Ty be the operator with multiplier ¢ * u. Then ,||Ty| <
s T
f) Let £1,&5,...,€n_k be fixed, and define

R* = {£ € R €+ 4 ak- £ = A},

Let po = ﬂIRko and let Ty be the operator on LP(IR¥°) with multiplier uo. Then
for almost all X, ,||Tol| < LT

PRrOOF: The proofs of a) - d) are all easy, and all make use of the fact that the
Fourier transform behaves predictably under conjugation, dilation, rotation, trans-
lation, or what-have-you. We do a typical proof to suggest that the reader have the
same experiences:

a)
T,f(z) = / (€ — )ePinE f(€)de

= / W(E)Ti=ED (e 4 n)de

= amiztn [ ) (e (@) (€)dg = ITI(S)

where J is the isometry of multiplication by e?7",
e) We will use duality, a very standard trick in the Fourier multiplier game.
Choose f, g, in S with |||l = |lgll = 1, and compute:

/T¢fg=/f¢\f§=/¢*uf§
= [ [ wnute = mi© 3€xinde = [wn) [ ute ~ mice) deriean

< il H/u(ﬁ = m)f(€) §(E)delloonllglly < ¥l AT,

by part d) above.

f) We will give the proof only for the case n = 2,k = 1, and even restrict attention
to & = (0,1). Higher dimensional cases are very similar, except they involve a lot
more notation, while more general cases in R* can be obtained by rotations and
translations of this one.

In our special case, R!® = {(—, )}, and we must show that for almost all ),
p(€1,A) is a multiplier of LP(IR'). Since this A business could cause real friction

with previous notation, we’ll prove that u(¢;,£;) is a multiplier of LP(IR') for almost
all &,.

18



The first pain is that g is only measurable, and the restriction of u to one-
dimensional hyperplanes is not very well defined. We will use another standard
trick in multiplier theory. Assume first that u is continuous. Let f;,g;, ¢ = 1,2 be

chosen with || fill, = |lgillr = 1; let f(z1,22) = fi(z1)f(2z2), and similarly for g.
Then:

/ [ / u(el,@)fl(zl)g(&)dfl] Feies = [ mef a6

- / Trg = / Tfg < |Tfllolly < ST
Define
o(€2) = / (s, E2) Fr(60)61(6)dE.

Rewriting the above computation gives us:

/U(ﬁz)f(fz)ﬁz(ﬁz)dﬁz < LT

Therefore, o is a multiplier of LP(IR'). But Lemma 1.16 told us that (€)oo <

lIT]|. Since  is continuous, ¢ is continuous, and o(£2) < |||, for all &;. Rewrit-
ing,

| / W &) (6N < LIT]
| / uo(6) 1 (€1)5(61)dEr| < ,|IT

[Tl < i

p”TOH < p”TH-

We assumed p was continuous; we’ll use a standard trick to replace continuity
assumptions by almost everywhere conditions. Let S denote the unit square, and

let 5(¢) = 67*xs(877¢). Then ¢ € L' and p € L, so that s % u is continuous,
whence, for every &,

/ s % (s, E)Fu(60)31 (61)dEr < I Tbs]

< SlITWIslh = ST

Now, for almost every &, it happens that almost every £; is a Lebesgue point of
to- These &, are the ones referred to in the theorem; fix one. The definition of
Lebesgue point £; is that

5 6
%im Y5 * p(€1,€&2) = lim 672 / / w{m — €1,m2 — &2 )dnydng
—-0 5§—0 —6J—6
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= ﬂ(fl,&)-

For this choice of &3, 15 * (€1, €2) converges almost everywhere in £; to u(&,£) =

#o(€1). Of course (s *p) f1§1 also converges; to get the integrals to converge, I need
dominated convergence. But

(s * 1) Frdn| < [lwbs % pllool fi [l

< sl limlloolf1 1l

Therefore,
[ mle0eniend = lim [vswhian < T

and |To]] £ p||T) for almost all &,.

1.24 REMARKS: These results are important because they let us deform multipliers
into things we can handle. For example, if ¢ is in &, and g is a multiplier, then yu
and 1 * ¢ are multipliers. We already used this in the proof of the above theorem:
we changed an arbitrary multiplier into a continuous function, with no side-effects.
In general, p is just in L™ , and K is some distribution, but if we alter by a
compactly supported function 1, then Ky, the inverse Fourier transform of 1y, is
a continuous function. In the following, changing an awful distribution into a nice
regular function is going to be our favorite trick.

The real importance is philosophical. The L? boundedness of (T, K, ) is influ-
enced by the size of K, which reflects the smoothness of i = K. But the computa-
tion of i is a global average of all of u against some exponentials, so it is difficult
to understand how a local property of p can affect the Fourier transform K. This
is the point of having around %u or 3 * u. The first changes u into a compactly
supported function; the second changes u into a smoother function.
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